BLOGGER TEMPLATES AND TWITTER BACKGROUNDS »

Jumat, 19 November 2010

Spektrum Elektromagnetik


Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan (lihat juga tabel dan awalan SI):
Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz
Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1μeV/GHz
Panjang gelombang dikalikan dengan energy per foton adalah 1.24 μeVm
Spektrum elektromagnetik dapat dibagi dalam beberapa daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan praktis yang secara historis berasal dari berbagai macam metode deteksi. Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (λ ≥ 0,5 mm). Istilah "spektrum optik" juga masih digunakan secara luas dalam merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian rentang panjang gelombang saja (320 - 700 nm)


Read More..

Atomic absorption spectroscopy


Instrumentation
Atomic absorption spectrometer block diagram
In order to analyze a sample for its atomic constituents, it has to be atomized. The sample should then be illuminated by light. The light transmitted in order to determine the content of a given analyte in a sample, it has to be atomized. The atomizers most commonly used nowadays are flames and electrothermal (graphite tube) atomizers. The atoms should then be irradiated by optical radiation, and the radiation source could be an element-specific line radiation source or a continuum radiation source. The radiation then passes through a monochromator in order to separate the element-specific radiation from any other radiation emitted by the radiation source, which is finally measured by a detector.

Atomizers
Although other atomizers, such as heated quartz tubes, might be used for special purposes, the atomizers most commonly used nowadays are (spectroscopic) flames and electrothermal (graphite tube) atomizers.
[edit]Flame atomizers
The oldest and most commonly used atomizers in AAS are flames, principally the air-acetylene flame with a temperature of about 2300 °C and the nitrous oxide (N2O)-acetylene flame with a temperature of about 2700 °C. The latter flame, in addition, offers a more reducing environment, being ideally suited for analytes with high affinity to oxygen.
Liquid or dissolved samples are typically used with flame atomizers. The sample solution is aspirated by a pneumatic nebulizer, transformed into an aerosol, which is introduced into a spray chamber, where it is mixed with the flame gases and conditioned in a way that only the finest aerosol droplets (<>

Read More..

Sabtu, 25 September 2010

Tutorial Membuat Robot Cerdas


Tim yang masuk final Kontes Robot Indonesia (KRI) dan Kontes Robot Cerdas Indonesia (KRCI) 2008 secara resmi diumumkan hari ini (lihat di: Pengumuman Final KRI/KRCI 2008). Dua puluh empat (24) tim berhak bertarung dalam lomba robot panjat pinang (KRI) dan 37 tim robot bertarung dalam kontes robot cerdas pemadam api (KRCI). Bagaimana cara membuat robot-robot itu agar bisa hebat & cerdas? Dalam tutorial ini akan dijelaskan langkah-langkah membuat robot cerdas, baik KRI/KRCI.

Tahap-tahap pembuatan robot





Secara garis besar, tahapan pembuatan robot dapat dilihat pada gambar berikut:

tutorial membuat robot cerdas tahapan pembuatan

Ada tiga tahapan pembuatan robot, yaitu:

1. Perencanaan, meliputi: pemilihan hardware dan design.
2. Pembuatan, meliputi pembuatan mekanik, elektonik, dan program.
3. Uji coba.

1. Tahap perencanan

Dalam tahap ini, kita merencanakan apa yang akan kita buat, sederhananya, kita mau membuat robot yang seperti apa? berguna untuk apa? Hal yang perlu ditentukan dalam tahap ini:

* Dimensi, yaitu panjang, lebar, tinggi, dan perkiraan berat dari robot. Robot KRI berukuran tinggi sektar 1m, sedangkan tinggi robot KRCI sekitar 25 cm.
* Struktur material, apakah dari alumunium, besi, kayu, plastik, dan sebagainya.
* Cara kerja robot, berisi bagian-bagian robot dan fungsi dari bagian-bagian itu. Misalnya lengan, konveyor, lift, power supply.
* Sensor-sensor apa yang akan dipakai robot.
* Mekanisme, bagaimana sistem mekanik agar robot dapat menyelesaikan tugas.
* Metode pengontrolan, yaitu bagaimana robot dapat dikontrol dan digerakkan, mikroprosesor yanga digunakan, dan blok diagram sistem.
* Strategi untuk memenangkan pertandingan, jika memang robot itu akan diikutkan lomba/kontes robot Indonesia/Internasional.

2. Tahap pembuatan

Ada tiga perkerjaan yang harus dilakukan dalam tahap ini, yaitu pembuatan mekanik, elektronik, dan programming. Masing-masing membutuhkan orang dengan spesialisasi yang berbeda-beda, yaitu:

* Spesialis Mekanik, bidang ilmu yang cocok adalah teknik mesin dan teknik industri.
* Spesialis Elektronika, bidang ilmu yang cocok adalah teknik elektro.
* Spesialis Programming, bidang ilmu yang cocok adalah teknik informatika.

Jadi dalam sebuah tim robot, harus ada personil-personil yang memiliki kemampuan tertentu yang saling mengisi. Hal ini diperlukan dalam membentuk Tim Kontes Robot Indonesia (KRI) atau Kontes Robot Cerdas Indonesia (KRCI). Bidang ilmu yang saya sebutkan tadi, tidak harus diisi mahasiswa/alumni jurusan atau program studi tersebut, misalnya boleh saja mahasiswa jurusan teknik mesin belajar pemrograman.

Untuk mengikuti lomba KRI/KRCI dibutuhkan sebuah tim yang solid. Tetapi buat Anda yang tertarik membuat robot karena hobby atau ingin belajar, semua bisa dilakukan sendiri, karena Anda tidak terikat dengan waktu atau deadline. Jadi Anda bisa melakukannya dengan lebih santai.

Pembuatan mekanik

Setelah gambaran garis besar bentuk robot dirancang, maka rangka dapat mulai dibuat. Umumnya rangka robot KRI terbuat dari alumunium kotak atau alumunium siku. Satu ruas rangka terhubung satu sama lain dengan keling alumunium. Keling adalah semacam paku alumunium yang berguna untuk menempelkan lembaran logam dengan erat. Rangka robot KRCI lebih variatif, bisa terbuat dari plastik atau besi panjang seperti jeruji.

Pembuatan sistem elektronika

Bagian sistem elektronika dirancang sesuai dengan fungsi yang diinginkan. Misalnya untuk menggerakkan motor DC diperlukan h-brigde, sedangkan untuk menggerakkan relay diperlukan saklar transistor. Sensor-sensor yang akan digunakan dipelajari dan dipahami cara kerjanya, misalnya:

1. Sensor jarak, bisa menggunakan SRF04, GP2D12, atau merakit sendiri modul sensor ultrasonik atau inframerah.
2. Sensor arah, bisa menggunakan sensor kompas CMPS03 atau Dinsmore.
3. Sensor suhu, bisa menggunakan LM35 atau sensor yang lain.
4. Sensor nyala api/panas, bisa menggunakan UVTron atau Thermopile.
5. Sensor line follower / line detector, bisa menggunakan led & photo transistor.

Berikut ini gambar sensor ultrasonik, inframerah, UVTron, dan kompas:

tutorial membuat robot cerdas srf 04tutorial membuat robot cerdas gp2d12kompas CMPS03

Pembuatan sistem elektronika ini meliputi tiga tahap:

* Design PCB, misalnya dengan program Altium DXP.
* Pencetakan PCB, bisa dengan Proboard.
* Perakitan dan pengujian rangkaian elektronika.

tutorial membuat robot cerdas design pcb


Pembuatan Software/Program

Pembuatan software dilakukan setelah alat siap untuk diuji. Software ini ditanamkan (didownload) pada mikrokontroler sehingga robot dapat berfungsi sesuai dengan yang diharapkan.

tutorial membuat robot cerdas pemrograman

Tahap pembuatan program ini meliputi:

1. Perancangan Algoritma atau alur program
Untuk fungsi yang sederhana, algoritma dapat dibuat langsung pada saat menulis program. Untuk fungsi yang kompleks, algoritma dibuat dengan menggunakan flow chart.
2. Penulisan Program
Penulisan program dalam Bahasa C, Assembly, Basic, atau Bahasa yang paling dikuasai.
3. Compile dan download, yaitu mentransfer program yang kita tulis kepada robot.

3. Uji coba

Setelah kita mendownload program ke mikrokontroler (otak robot) berarti kita siap melakukan tahapan terakhir dalam membuat robot, yaitu uji coba. Untuk KRCI, ujicoba dilakukan pada arena seluas sekitar 4×4 meter dan berbentuk seperti puzzle. Dalam arena KRCI ini diletakkan lilin-lilin yang harus dipadamkan oleh robot cerdas pemadam api. Contoh gambar robot pemadam api Ted Larsorn dan arena Kontes Robot Cerdas Indonesia (KRCI).

tutorial membuat robot cerdas contoh robot cerdasarena-lomba-krci

Untuk lomba robot KRI, dibutuhkan ruangan yang lebih besar, yaitu sekitar 15×15 meter. Dalam Kontes Robot Indonesia (KRI) 2008, masing-masing robot harus meraih target (bola/kubus) yang diletakkan di tempat yang tinggi, jadi sebuah robot harus bisa naik di atas robot yang lain untuk meraih target tersebut (seperti panjat pinang).

Read More..

Rabu, 15 September 2010

Spektrofotometri

Spektrofotometri merupakan suatu metoda analisa yang didasarkan pada pengukuran serapan sinar monokromatis oleh suatu lajur larutan berwarna pada panjang gelombamg spesifik dengan menggunakan monokromator prisma atau kisi difraksi dengan detektor fototube.

Spektrofotometer adalah alat untuk mengukur transmitan atau absorban suatu sampel sebagai fungsi panjang gelombang. Sedangkan pengukuran menggunakan spektrofotometer ini, metoda yang digunakan sering disebut dengan spektrofotometri.

Spektrofotometri dapat dianggap sebagai perluasan suatu pemeriksaan visual dengan studi yang lebih mendalam dari absorbsi energi. Absorbsi radiasi oleh suatu sampel diukur pada berbagai panjang gelombangdan dialirkan oleh suatu perkam untuk menghasilkan spektrum tertentu yang khas untuk komponen yang berbeda.

Absorbsi sinar oleh larutan mengikuti hukum Lambert-Beer, yaitu :



Hukum_Lambert_Beer

A = log ( Io / It ) = a b c

Keterangan : Io = Intensitas sinar datang

It = Intensitas sinar yang diteruskan

a = Absorptivitas

b = Panjang sel/kuvet

c = konsentrasi (g/l)

A = Absorban

Spektrofotometri merupakan bagian dari fotometri dan dapat dibedakan dari filter fotometri sebagai berikut :

1. Daerah jangkauan spektrum

Filter fotometr hanya dapat digunakan untuk mengukur serapan sinar tampak (400-750 nm). Sedangkan spektrofotometer dapat mengukur serapan di daerah tampak, UV (200-380 nm) maupun IR (> 750 nm).

2. Sumber sinar

Sesuai dengan daerah jangkauan spektrumnya maka spektrofotometer menggunakan sumber sinar yang berbeda pada masing-masing daerah (sinar tampak, UV, IR). Sedangkan sumber sinar filter fotometer hanya untuk daerah tampak.

3. Monokromator

Filter fotometere menggunakan filter sebagai monokrmator. Tetapi pada spektro digunakan kisi atau prisma yang daya resolusinya lebih baik.

4. Detektor

- Filter fotometer menggunakan detektor fotosel

- Spektrofotometer menggunakan tabung penggandaan foton atau fototube.

Komponen utama dari spektrofotometer yaitu :

1. 1. Sumber cahaya

Untuk radisi kontinue :

- Untuk daerah UV dan daerah tampak :

- Lampu wolfram (lampu pijar) menghasilkan spektrum kontiniu pada gelombang 320-2500 nm.

- Lampu hidrogen atau deutrium (160-375 nm)

- Lampu gas xenon (250-600 nm)

Untuk daerah IR

Ada tiga macam sumber sinar yang dapat digunakan :

- Lampu Nerst,dibuat dari campuran zirkonium oxida (38%) Itrium oxida (38%) dan erbiumoxida (3%)

- Lampu globar dibuat dari silisium Carbida (SiC).

- Lampu Nkrom terdiri dari pita nikel krom dengan panjang gelombang 0,4 – 20 nm

- Spektrum radiasi garis UV atau tampak :

- Lampu uap (lampu Natrium, Lampu Raksa)

- Lampu katoda cekung/lampu katoda berongga

- Lampu pembawa muatan dan elektroda (elektrodeless dhischarge lamp)

- Laser

1. 2. Pengatur Intensitas

Berfungsi untuk mengatur intensitas sinar yang dihasilkan oleh sumber cahaya agar sinar yang masuk tetap konstan.

1. 3. Monokromator

Berfungsi untuk merubah sinar polikromatis menjadi sinar monokromatis sesuai yang dibutuhkan oleh pengukuran

Macam-macam monokromator :

- Prisma

- kaca untuk daerah sinar tampak

- kuarsa untuk daerah UV

- Rock salt (kristal garam) untuk daerah IR

- Kisi difraksi

Keuntungan menggunakan kisi :

- Dispersi sinar merata

- Dispersi lebih baik dengan ukuran pendispersi yang sama

- Dapat digunakan dalam seluruh jangkauan spektrum

1. 4. Kuvet

Pada pengukuran di daerah sinar tampak digunakan kuvet kaca dan daerah UV digunakan kuvet kuarsa serta kristal garam untuk daerah IR.

1. 5. Detektor

Fungsinya untuk merubah sinar menjadi energi listrik yang sebanding dengan besaran yang dapat diukur.

Syarat-syarat ideal sebuah detektor :

- Kepekan yang tinggi

- Perbandingan isyarat atau signal dengan bising tinggi

- Respon konstan pada berbagai panjang gelombang.

- Waktu respon cepat dan signal minimum tanpa radiasi.

- Signal listrik yang dihasilkan harus sebanding dengan tenaga radiasi.

Macam-macam detektor :

- Detektor foto (Photo detector)

- Photocell

- Phototube

- Hantaran foto

- Dioda foto

- Detektor panas

1. 6. Penguat (amplifier)

Berfungsi untuk memperbesar arus yang dihasilkan oleh detektor agar dapat dibaca oleh indikator.

1. 7. Indikator

Dapat berupa :

- Recorder

- Komputer

Read More..

Selasa, 14 September 2010

Virus Beriming-iming Gratis Film Porno Menyebar Cepat

Suatu virus email dengan iming-iming link ke film seks gratis telah mengakibatkan masalah besar pada berbagai perusahaan di seluruh dunia akhir pekan ini.

Seperti diberitakan Daily Mail, virus trojan dengan judul "Here you have", memenuhi kotak masuk dengan berbagai email setelah menginfeksi address book pengguna.

Terdapat beberapa kejadian ketika virus tersebut merusak sistem email perusahaan-perusahaan karena banyaknya pesan.Trojan adalah program jahat yang bersembunyi di dalam file komputer.

Virus ini datang sebagai email dengan baris subjek 'Here you have" dan mengundang pengguna untuk mengklik link ke file PDF. Salah satu varian yang paling banyak adalah ajakan link untuk gratis 'unduh seks'.

Jika pengguna melakukan tawaran itu, artinya virus diunduh ke komputer dan menyebar ke semua kontak di account email. Virus jenis worm ini juga mencoba untuk mematikan semua perangkat lunak anti-virus yang terinstal.

Kalimat "Here you have virus" jadi salah satu frase yang paling dicari di Google.

Salah satu versi email bertuliskan "'Hello: This is The Document I told you about, you can find it here' and includes a link to what looks like a PDF."

Lainnya mencakup subjek 'Just For you' dan kalimat 'This is The Free Dowload Sex Movies,you can find it Here.''

Jika Anda menerima pesan tersebut, McAfee menganjurkan untuk menghapusnya tanpa mengklik link. Anda juga bisa memberitahu bagian IT kantor.

Ram Herkanaidu, peneliti keamanan di Kaspersky Lab, mengemukakan bahwa pengguna hanya terinfeksi jika mereka mengklik link tersebut, melakukan save dan menjalankan file tersebut.

from : http://www.antaranews.com

Read More..

Darah Garuda Dirilis Saat Libur Lebaran


Menyusul kesuksesan film ‘Merah Putih’ yang berhasil mencetak box office 2009 lalu, kini PT Media Desa Indonesia bekerjasama dengan Margate House Films akan memproduksi film sekuelnya, ‘Darah Garuda’.

Produser Eksekutif sekuel Merah Putih, Hashim Djojohadikusumo mengungkapkan, setahun terakhir ini film Merah Putih banyak meraih sukses di Box Office, juga mendapatkan sejumlah penghargaan.

“Penghargaan di dalam negeri sampai berbagai festival dan pasar film di Los Angeles, Cannes, Pusan, Berlin, Hong Kong, Amsterdam, Sydney, dan Moscow. Kami sangat senang dan terhormat akan reaksi penonton yang luar biasa besar dan antusias terhadap kisah penting tentang pengorbanan para pahlawan demi persatuan, toleransi beragama, dan kemerdekaan,” terang Hashim dalam rilisnya kepada okezone di Jakarta, Jumat (20/8/2010).

Berdasarkan hal itu, PT MDI berencana merilis sekuel film Merah Putih, yaitu Darah Garuda yang rencananya akan dirilis di bioskop mulai 8 September mendatang. “Untuk merayakan liburan Idul Fitri. Waktu di mana seluruh keluarga di seantero Indonesia berkumpul untuk merayakan hari yang bahagia,” katanya.

Film ini menceritakan sebuah kelompok heroik para kadet yang menjadi tentara gerilya pada tahun 1947 yang dipotret dengan brilian oleh aktor-aktor berbakat papan atas Indonesia yang diperankan Donny Alamsyah, Rifnu Wikana, Lukman Sardi, dan Darius Sinathrya.

Terpecah oleh rahasia-rahasia mereka di masa lalu dan konflik yang tajam dalam hal kepribadian, kelas sosial dan agama, keempat lelaki muda bersatu untuk melancarkan sebuah serangan nekat terhadap kamp tawanan milik Belanda demi menyelamatkan para perempan yang mereka cintai, yang diperankan Rahayu saraswati, Astri Nurdin, dan Atiqah Hasiholan.

Para kadet ini terhubung dengan kantor pusat Jendral Sudirman, mereka diberi sebuah tugas sangat rahasia di belakang garis musuh di Jawa Barat: sebuah serangan gaya komando pada lapangan udara vital yang dapat membalikkan perlawanan para pemberontak melawan kezaliman yang telah dilakukan Jendral Van Mook, agustus 1947.

Film ini menjadi menarik karena film dalam format 35-milimeter berdurasi 100 menit ini, menampilkan adegan-adegan action memukau yang melibatkan ahli perfilman internasional terbaik dalam bidang efek khusus dan tata teknis lain yang berpengalaman di perfilman hollywood.

Seperti koordinator efek khusus Adam owarth (Saving Private Ryan, Blackhawk Down) dan ahli persenjataan John Bowring (The Matrix, The Thin Red Line, Australia, Wolverine), adalah para veteran di film Merah Putih. Dengan tim penyutradaraan baru Yadi Sugandi dan Conor Allyn, darah garuda dan film ketiga yang nanti akan muncul dari trilogi ini, Hati Merdeka, membawa ahli-ahli lain seperti nominator piala oscar untuk tata rias dan prostetik Conor o’Sullivan (The Dark Knight, Saving Private Ryan, Braveheart), koordinator laga Scott Mclean (The Matrix, The Pacific-sekuel terbaru dari steven spielberg/tom hanks Band Of Brothers), asisten sutradara Andy Howard (From Hell, Wanted, Hellboy) dan teknisi ahli efek khusus Graham Riddell (Robin Hood, Batman Begins, Star Wars I, Band Of Brothers, Kingdom Of Heaven).

Read More..

Sabtu, 11 September 2010

Apakah yang dimaksud dengan larutan penyangga?

Definisi

Larutan penyangga adalah satu zat yang menahan perubahan pH ketika sejumlah kecil asam atau basa ditambahkan kedalamnya.

Larutan penyangga yang bersifat asam

Larutan penyangga yang bersifat asam adalah sesuatu yang memiliki pH kurang dari 7. Larutan penyangga yang bersifat asam biasanya terbuat dari asam lemah dan garammya – acapkali garam natrium.

Contoh yang biasa merupakan campuran asam etanoat dan natrium etanoat dalam larutan. Pada kasus ini, jika larutan mengandung konsentrasi molar yang sebanding antara asam dan garam, maka campuran tersebut akan memiliki pH 4.76. Ini bukan suatu masalah dalam hal konsentrasinya, sepanjang keduanya memiliki konsentrasi yang sama.

Anda dapat mengubah pH larutan penyangga dengan mengubah rasio asam terhadap garam, atau dengan memilih asam yang berbeda dan salah satu garamnya.

Larutan penyangga yang bersifat basa

larutan penyangga yang bersifat basa memiliki pH diatas 7. Larutan penyangga yang bersifat basa biasanya terbuat dari basa lemah dan garamnya.

Seringkali yang digunakan seimbagai contoh adalah campuran larutan amonia dan larutan amonium klorida. Jika keduanya dalam keadaan perbandingan molar yang sebanding, larutan akan memiliki pH 9.25. Sekali lagi, hal itu bukanlah suatu masalah selama konsentrasi yang anda pilih keduanya sama.

Bagaimana cara larutan penyangga bekerja?

Larutan penyangga mengandung sesuatu yang akan menghilangkan ion hidrogen atau ion hidroksida yang mana anda mungkin menambahkannya – sebaliknya akan merubah pH. Larutan penyangga yang bersifat asam dan basa mencapai kondisi ini melalui cara yang berbeda.

Larutan penyangga yang bersifat asam

Kita akan mengambil campuran asam etanoat dan natrium etanoat sebagai contoh yang khas.

Asam etanoat adalah asam lemah, dan posisi kesetimbangan akan bergeser ke arah kiri:

Penambahan natrium etanoat pada kondisi ini menambah kelebihan ion etanoat dalam jumlah yang banyak. Berdasarkan Prinsip Le Chatelier, ujung posisi kesetimbangan selanjutnya bergeser ke arah kiri.

Karena itu larutan akan mengandung sesuatu hal yang penting:

  • Banyak asam etanoat yang tidak terionisasi;

  • Banyak ion etanoat dari natrium etanoat:

  • Cukup ion hidrogen untuk membuat larutan menjadi bersifat asam.

Sesuatu hal yang lain (seperti air dan ion natrium) yang ada tidak penting pada penjelasan.

Penambahan asam pada larutan penyangga yang bersifat asam

Larutan penyangga harus menghilangkan sebagian besar ion hidrogen yang baru sebaliknya pH akan turun dengan mencolok sekali.

Ion hidrogen bergabung dengan ion etanoat untuk menghasilkan asam etanoat. Meskipun reaksi berlangsung reversibel, karena asam etanoat adalah asam lemah, sebagaian besar ion hidrogen yang baru dihilangkan melalui cara ini.

Karena sebagian besar ion hidrogen yang baru dihilangkan, pH tidak akan berubah terlalu banyak – tetapi karena kesetimbangan ikut terlibat, pH akan sedikit menurun.

Penambahan basa pada larutan penyangga yang bersifat asam

Larutan basa mengandung ion hidroksida dan larutan penyangga menghilangkan ion hidroksida tersebut.

Kali ini situasinya sedikit lebih rumit karena terdapat dua proses yang dapat menghilangkan ion hidroksida.

Penghilangan ion hidroksida melalui reaksi dengan asam etanoat

Sebagian besar zat yang bersifat asam yang mana ion hidroksida bertumbukan dengan molekul asam etanoat. Keduanya akan bereaksi untuk membentuk ion etanoat dan air.

Karena sebagian besar ion hidroksida dihilangkan, pH tidak berubah terlalu besar.

Penghilangan ion hidroksida melalui reaksi dengan ion hidrogen

Harus diingat bahwa beberapa ion hidrogen yang ada berasal dari ionisasi asam aetanoat.

Ion hidroksida dapat bergabung dengannya untuk membentuk air. Selama hal itu terjadi, ujung kesetimbangan menggantikannya. Hal ini tetap terjadi sampai sebagian besar ion hidrogen dihilangkan.

Sekali lagi, karena anda memiliki kesetimbangan yang terlibat, tidak semua ion hidroksida dihilangkan – karena terlalu banyak. Air yang terbentuk terionisasi kembali menjadi tingat yang sangat kecil untuk memberikan beberapa ion hidrogen dan ion hidroksida.

Larutan penyangga yang bersifat basa

Kita akan menganbil campuran larutan amonia dan amonium klorida sebagai contoh yang khas.

Amonia adalah basa lemah, dan posisi kesetimbangan akan bergerak ke arah kiri:

Penambahan amonium klorida pada kondisi ini menambahkan kelebihan ion amonium dalam jumlah yang banyak. Berdasarkan Prinsip Le Chatelier, hal itu akan menyebabkan ujung posisi kesetimbangan akan bergeser ke arah kiri.

Karena itu larutan akan mengandung beberapa hal yang penting:

  • Banyak amonia yang tidak bereaksi;

  • Banyak ion amonia dari amonium klorida;

  • Cukup ion hidrogen untuk menghasilkan larutan yang bersifat basa.

Hal lain (seperti air dan ion klorida) yang ada tidak penting pada penjelasan.

Penambahan asam pada larutan penyangga yang bersifat basa

Terdapat dua proses yang dapat menghilangkan ion hidrogen yang anda tambahkan.

Penghilangan ion hidrogen melalui reaksi dengan amonia

Sebagian besar zat dasar yang mana ion hidrogen bertumbukan dengannya adalah molekul amonia. Keduanya akan bereaksi untuk membentuk ion amonium.

Sebagian besar, tetapi tidak seluruhnya, ion hidrogen akan dihilangkan. Ion amonium bersifat asam yang sedikit lemah, dan karena itu ion hidrohen akan dilepaskan kembali.

Penghilangan ion hidrogen melalui reaksi dengan ion hidroksida

Harus diingat bahwa beberepa ion hidroksida yang ada berasal dari reaksi antara amonia dan air.

Ion hidrogen dapat bergabung dengan ion hidroksida tersebut untuk menghasilkan air. Selama hal itu terjadi, ujung kesetimbangan menggantikan ion hidroksida. Hal ini terus terjadi sampai sebagian besar ion hidrogen dihilangkan.

Sekali lagi, karena anda memiliki kesetimbangan yang terlibat, tidak semua ion hidrogen dihilangkan – hanya sebagian besar.

Penambahan basa pada larutan penyangga yang bersifat basa

Ion hidroksida dari alkali dihilangkan melali reaksi yang sederhana dengan ion amonium.

Karena amonia yang terbentuk merupakan basa lemah, amonia akan bereaksi dengan air – dan karena itu reaksi sedikit reversibel. Hal ini berarti bahwa, sekali lagi, sebagian besar (tetapi tidak semuanya) ion hidrogen dihilangkan dari larutan.

sumber: http://www.chem-is-try.org

Read More..

Minggu, 05 September 2010

Kesetimbangan

Kita akan mempelajari reaksi timbal balik dan apa yang terjadi di sebuah sistem tertutup. Ini akan membawa kita kepada konsep kesetimbangan dinamis dan akan mengajak kita berpikir mengenai arti istilah ‘pergeseran kesetimbangan’.

Reaksi timbal balik
Reaksi timbal balik adalah reaksi yang, tergantung keadaan, dapat mengalir ke dua arah.

Apabila Anda meniupkan uap panas ke sebuah besi yang panas, uap panas ini akan bereaksi dengan besi dan membentuk sebuah besi oksida magnetik berwarna hitam yang disebut ferri ferro oksida atau magnetit, Fe3O4.



Hidrogen yang terbentuk oleh reaksi ini tersapu oleh aliran uap.


Dalam keadaan lain, hasil-hasil reaksi ini akan saling bereaksi. Hidrogen yang melewati ferri ferro oksida panas akan mengubahnya menjadi besi, dan uap panas juga akan terbentuk.



Uap panas yang kali ini terbentuk tersapu oleh aliran hidrogen.



Reaksi ini dapat berbalik, tapi dalam keadaan biasa, reaksi ini menjadi reaksi satu arah. Produk dari reaksi satu arah ini berada dalam keadaan terpisah dan tidak dapat bereaksi satu sama lain sehingga reaksi sebaliknya tidak dapat terjadi.

Reaksi timbal balik yang terjadi pada sistem tertutup

Sistem tertutup adalah situasi di mana tidak ada zat yang ditambahkan atau diambil dari sistem tersebut. Tetapi energi dapat ditransfer ke luar maupun ke dalam.

Pada contoh yang baru kita bahas tadi, Anda harus membayangkan sebuah besi yang dipanaskan oleh uap dalam sebuah kotak tertutup. Panas ditambahkan ke dalam sistem ini, namun tidak satu zat pun yang terlibat dalam reaksi ini dapat keluar dari kotak. Keadaan demikian disebut sistem tertutup.

Pada saat ferri ferro oksida dan hidrogen mulai terbentuk, kedua zat ini akan saling bereaksi kembali untuk membentuk besi dan uap panas yang ada pada mulanya. Coba pikirkan, kira-kira apa yang Anda temukan ketika menganalisis campuran ini setelah beberapa saat?

Anda akan sadar, bahwa Anda telah membentuk situasi yang disebut kesetimbangan dinamis.

Kesetimbangan Dinamis

Mempelajari kesetimbangan dinamis secara visual

Bayangkan sebuah zat yang dapat berada dalam dua bentuk/warna, biru dan merah, masing-masing dapat bereaksi untuk menjadi yang lain (biru menjadi merah, merah menjadi biru). Kita akan membiarkan mereka bereaksi dalam sistem tertutup, di mana tidak ada satu pun yang dapat keluar dari sistem ini.

Biru dapat berubah menjadi merah jauh lebih cepat daripada merah menjadi biru. Dan berikut adalah peluang (probabilitas) dari perubahan yang dapat terjadi. 3/6 biru berubah menjadi merah, dan 1/6 merah berubah menjadi biru.



Anda dapat mencobanya dengan kertas berwarna yang digunting kecil-kecil (dua warna) dan sebuah dadu.

Berikut adalah hasil dari ‘reaksi’ (simulasi) yang saya lakukan. Saya mulai dengan 16 potongan kertas biru. Saya melihat potongan-potongan itu satu per satu secara bergantian dan memutuskan apakah kertas yang saya lihat dapat berubah warna dengan melempar dadu.

Kertas biru dapat saya ganti dengan kertas merah apabila angka 4, 5 dan 6 keluar.

Kertas merah dapat saya ganti dengan kertas biru apabila angka 6 keluar pada saat saya melihat sebuah kertas merah.

Ketika saya selesai melihat ke-16 kertas itu, saya mulai lagi dari awal. Tapi tentu saja kali ini saya mulai dengan pola yang berbeda. Diagram di bawah ini menunjukkan hasil yang saya dapat setelah saya mengulang proses ini sebanyak 11 kali (dan saya tambahkan 16 potongan kertas biru yang saya punya pada awal simulasi).



Anda dapat melihat bahwa ‘reaksi’ berlangsung terus menerus. Pola yang terbentuk dari kertas merah dan biru terus berubah. Tapi, yang mengejutkan ialah, jumlah keseluruhan dari masing-masing kertas warna biru dan merah tetap sama, di mana dalam berbagai situasi, kita dapatkan 12 kertas warna merah dan 4 kertas warna biru.

Catatan : Sejujurnya, hasil akhir ini diperoleh secara kebetulan karena simulasi ini dilakukan dengan jumlah kertas yang sangat sedikit. Apabila Anda melakukan simulasi ini dengan jumlah kertas yang lebih banyak (misalnya beberapa ribu kertas), Anda akan mendapati proporsi yang terbentuk akan mendekati 75% merah dan 25% biru (suatu simulasi yang sangat membosankan, tentunya).

Apabila Anda mempunyai sejumlah besar partikel yang turut ambil bagian dalam sebuah reaksi kimia, proporsinya akan mendekati 75%:25%.

Penjelasan tentang "kesetimbangan dinamis"

Reaksi (simulasi) di atas telah mencapai kesetimbangan dalam arti tidak akan perubahan lebih lanjut dalam jumlah kertas biru dan merah. Namun demikian, reaksi ini masih terus berlangsung. Untuk setiap kertas merah yang berubah warna jadi biru, ada kertas biru yang berubah jadi merah di suatu tempat dalam campuran tersebut.

Inilah yang kita kenal sebagai "kesetimbangan dinamis". Kata "dinamis" menunjukkan bahwa reaksi itu masih terus berlangsung.

Anda dapat menggunakan tanda panah khusus untuk memperlihatkan bahwa ada kesetimbangan dinamis pada persamaan reaksi. Untuk kasus yang kita bahas di atas, Anda dapat menulis seperti demikian :



Yang perlu kita perhatikan di sini ialah, ini tidak hanya berarti bahwa reaksi tersebut merupakan reaksi timbal balik, tapi ini menunjukkan bahwa reaksi ini adalah reaksi timbal balik yang berada dalam kesetimbangan dinamis.

Pergeseran Kesetimbangan

Pergeseran dari kiri ke kanan dalam persamaan (dalam hal ini, dari warna biru ke warna merah) disebut ‘pergeseran kesetimbangan ke kanan’ dan dari kanan ke kiri disebut ‘pergeseran kesetimbangan ke kiri’

Posisi kesetimbangan
Dalam contoh yang kita pakai, campuran kesetimbangan terdiri dari lebih banyak warna merah daripada warna biru. Posisi kesetimbangan dapat menggambarkan situasi ini. Kita dapat mengatakan bahwa:

  • Posisi kesetimbangan condong ke merah
  • Posisi kesetimbangan condong ke sebelah kanan

Apabila kondisi praktikum berubah (dengan mengubah peluang terjadinya pergeseran kesetimbangan ke kanan maupun ke kiri), komposisi dari campuran kesetimbangan itu sendiri pun akan berubah.

Contohnya, apabila dengan mengubah kondisi praktikum kita dapat memproduksi lebih banyak warna biru di dalam campuran kesetimbangan, kita bisa mengatakan bahwa "Posisi kesetimbangan bergeser ke kiri" atau "Posisi kesetimbangan bergeser ke warna biru".

Catatan: Apabila Anda tertarik, cobalah perbesar peluang warna merah berubah menjadi biru dari 1/6 menjadi 2/6 untuk melihat efeknya pada posisi kesetimbangan. Dengan kata lain, biarkanlah warnanya berubah apabila angka 5 atau angka 6 keluar pada saat dadu dilempar.

Mencapai kesetimbangan dari sisi yang lain

Apa yang terjadi bila Anda memulai reaksi dengan warna merah dan bukan warna biru namun tetap memberi kesempatan untuk berubah warna seperti di contoh pertama ? Ini adalah hasil dari percobaan saya.



Sekali lagi Anda dapat melihat konfigurasi yang terjadi sama persis dengan percobaan pertama di mana kita mulai dengan warna biru. Anda akan mendapat konfigurasi kesetimbangan yang sama tanpa dipengaruhi dari sisi mana Anda memulai reaksi.

Ingat: Anda tidak akan mendapat hasil yang sama bila menggunakan jumlah potongan kertas (yang melambangkan jumlah partikel) yang terlalu sedikit. Fluktuasi perubahan akan sangat mudah terlihat. Sekali lagi, apabila Anda menggunakan potongan kertas dalam jumlah besar, proporsi kesetimbangan akan menjadi 75% merah dan 25% biru. Dengan jumlah potongan kertas yang saya gunakan, kita mendapat hasil reaksi yang sangat dekat dengan proporsi rata-rata.

Kesetimbangan Dinamis, lagi, dengan lebih formal

Kecepatan Reaksi

Ini adalah persamaan untuk sebuah reaksi biasa yang telah mencapai kesetimbangan dinamis.



Bagaimana reaksi ini bisa mencapai keadaan tersebut? Anggap saja kita mulai dengan A dan B.

Pada awal reaksi, konsentrasi A dan B pada mula-mula ada pada titik maksimum, dan itu berarti kecepatan reaksi juga ada pada titik maksimum.



Seiring berjalannnya waktu, A dan B bereaksi dan konsentrasinya berkurang. Ini berarti, jumlah partikelnya berkurang dan kesempatan bagi partikel A dan B untuk saling bertumbukan dan bereaksi berkurang, dan ini menyebabkan kecepatan reaksi juga berangsur-angsur berkurang.

Pada awalnya tidak ada C dan D sama sekali sehingga tidak mungkin ada reaksi di antara keduanya. Seiring berjalannya waktu, konsentrasi C dan D bertambah banyak dan keduanya menjadi mudah bertumbukan dan bereaksi.

Dengan berlangsungnya waktu, kecepatan reaksi antara C dan D pun bertambah.



Akhirnya, kecepatan reaksi antara keduanya mencapai titik yang sama di mana kecepatan reaksi A dan B berubah menjadi C dan D sama dengan kecepatan reaksi C dan D berubah menjadi A dan B kembali.



Pada saat ini, tidak akan ada lagi perubahan pada jumlah A, B, C, D di dalam campuran. Begitu ada partikel yang berubah, partikel tersebut terbentuk kembali berkat adanya reaksi timbal balik. Pada saat inilah kita mencapai kesetimbangan kimia.

Rangkuman

Kesetimbangan kimia terjadi pada saat Anda memiliki reaksi timbal balik di sebuah sistem tertutup. Tidak ada yang dapat ditambahkan atau diambil dari sistem itu selain energi. Pada kesetimbangan, jumlah dari segala sesuatu yang ada di dalam campuran tetap sama walaupun reaksi terus berjalan. Ini dimungkinkan karena kecepatan reaksi ke kanan dan ke kiri sama.

Apabila Anda mengubah keadaan sedemikian rupa sehingga mengubah kecepatan relatif reaksi ke kanan dan ke kiri, Anda akan mengubah posisi kesetimbangan, karena Anda telah mengubah faktor dari sistem itu sendiri. Efek dari perubahan berbagai faktor dalam sistem terhadap posisi kesetimbangan akan dibahas pada bab yang lain.

Read More..